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Introduction

The term breast cancer refers to a malignant tumor that has
developed from cells in the breast. Breast cancer is the most
common cancer and the second leading cause of cancer death
among women in the United States; annual breast cancer
deaths are exceeded only by those from lung cancer. A
woman has a lifetime risk of developing breast cancer of
about one in eight. In 2007, the American Cancer Society esti-
mated that about 178480 new cases of invasive breast cancer
and about 62030 new cases of in situ (noninvasive) breast
cancer would be diagnosed among women in the United
States, and that about 40460 women will die from this disease.
Breast cancer is primarily a disease of women, but about 1%
of this disease also occurs in men. The American Cancer Soci-
ety estimated that during 2007 about 2030 men in the US will
develop invasive breast cancer, and that about 450 men will
die from the disease this year. There are mainly two common
types of breast cancer: 1) Ductal carcinomas start in the tubes
(ducts) that move milk from the breast to the nipple. Most
breast cancers are of this type that account for about 80% of
invasive breast cancer. 2) Lobular carcinoma starts in parts of
the breast called lobules, which produce milk. It accounts for
about 10% of invasive breast cancer. In rare cases, breast
cancer can start in other areas of the breast. Many breast can-
cers are sensitive to the hormone estrogen, suggesting that es-
trogen causes the breast cancer tumor to grow. This type of
breast cancer is known as estrogen-receptor-positive or ER-
positive breast cancer.[1, 2]

Among novel chemotherapeutic agents, the taxanes have
emerged as the most powerful group of compounds. Taxanes

such as taxol (paclitaxel ; 1) and taxotere (docetaxel ; 2) are two
important antimitotic drugs currently in clinical use for the
treatment of various types of cancers, including breast, lung,
ovarian, and prostate cancer. These drugs act as microtubule
stabilizers and disrupt microtubule dynamics, thus inducing
mitotic arrest and ultimately, cell death by apoptosis. Paclitaxel
and docetaxel were approved by the FDA for the treatment of
breast cancer in April 1994 and May 1996, respectively.[3–8]

Taxanes 1 and 2 share some characteristics and also have a
number of significant differences, both in terms of preclinical
and pharmacokinetic profiles and, most importantly, clinical
consequences. The taxanes are now standard therapy in the
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Breast cancer is the second leading cause of cancer death
among women in the United States. Two taxane analogues, taxol
and taxotere, are the most important antimitotic drugs currently
in clinical use for the treatment of breast cancers. However,
recent reports have indicated that the use of these drugs often re-
sults in various undesired side effects as well as multi-drug resist-
ance. These limitations have led to the development of new
taxane derivatives with fewer side effects, superior pharmacologi-
cal properties, and improved anticancer activity to maximize the
induced benefits for breast cancer patients. Herein, four series of
taxane derivatives were used to correlate their inhibitory activities
against breast cancer cells with their hydrophobic and steric
properties in order to understand their chemical–biological inter-
actions. The resulting QSARs show that the inhibitory activities of

taxane analogues against breast cancers are mainly dependent
either on their hydrophobicity or the hydrophobic/molar refrac-
tivity descriptor of their substituents. A parabolic correlation with
MRY is the most encouraging example, in which the optimum
value of this parameter is well defined. We believe this correlation
may prove to be an adequate predictive model that can help
provide guidance in design and synthesis and subsequently yield
highly specific compounds that may have high anti-breast-
cancer activity with fewer side effects and superior pharmacolog-
ical properties. On the basis of this QSAR model, five compounds
are suggested as potential synthetic targets. Internal (cross-vali-
dation (LOO�q2 and LMO�q2), quality factor (Q), Fischer statis-
tics (F), and Y-randomization) and external validation tests have
validated all the QSAR models.
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clinical treatment of metastatic breast cancer. Their role as
monochemotherapy or in combination with anthracyclines in
advanced breast cancer has suggested their potential thera-
peutic impact in the treatment of patients with early breast
cancer. Recent results demonstrate that taxanes, used either in
combination with other chemotherapeutic agents or in se-
quential therapy, can yield significant improvements, particu-
larly in terms of patient survival, confirming the positive
impact of taxanes on the natural history of breast cancer.[9] Al-
though drugs 1 and 2 have made significant progress in the
treatment of breast cancer, recent reports have indicated that
their use often results in various undesired side effects as well
as multi-drug resistance (MDR).[10,11] Therefore, it is important
to develop new taxanes with fewer side effects, superior phar-
macological properties, and improved anticancer activity to
maximize the induced benefits for breast cancer patients. The
quantitative structure–activity relationship (QSAR) paradigm
may be helpful in the design and development of novel
taxane molecules as new anticancer agents, which are expect-
ed to show improvements in activity against breast cancer and
in their toxicity profiles, pharmacology, and drug formulation.
Herein we demonstrate QSAR studies on various sets of

taxane analogues with respect to their activities against breast
cancer to understand their chemical–biological interactions.
The QSAR approach employs extra-thermodynamically derived
and computational-based descriptors to correlate biological ac-
tivity in isolated receptors, cellular systems, and in vivo. Four
standard molecular descriptors are routinely used in the devel-
opment of QSAR: electronic, hydrophobic, steric, and topologi-
cal indices. These descriptors are invaluable in helping to delin-
eate a large number of receptor–ligand interactions that are
critical in biological processes. The quality of a QSAR model,
however, depends strictly on the type and quality of the data,
and is valid only for the compound structure analogues used
to build the model. QSAR models can stand alone to augment
other computational approaches or can be examined in
tandem with equations of a similar mechanistic genre to estab-
lish their authenticity and reliability.[12]

Since the advent of QSAR methodology (one of the well-de-
veloped areas in computational chemistry) about 45 years
ago,[13] it has become increasingly helpful in understanding
many aspects of chemical–biological interactions in drug and
pesticide research as well as in the field of toxicology. QSAR is
useful in elucidating the mechanisms of chemical–biological in-
teractions in various biomolecules, particularly enzymes, as
well as membranes, organelles, cells, and in humans.[14–16] It
has also been used for the evaluation of absorption, distribu-
tion, metabolism, and excretion (ADME) phenomena in many
organisms and whole-animal studies.[17,18] The potential use of
QSAR models in screening chemical databases or virtual libra-
ries before their synthesis appears equally attractive to chemi-
cal manufacturers, pharmaceutical companies, and govern-
ment agencies.

Results and Discussion

Inhibition of MCF-7 breast cancer cell growth by taxane
ACHTUNGTRENNUNGderivatives 3

Equation (1)is based on the data obtained from Baloglu et al.[19]

(see Table 1):

log 1=IC50 ¼ 5:19ð�3:25ÞMRY�1:14ð�0:79ÞMRY2

þ4:52ð�3:32Þ
n ¼ 20, r2 ¼ 0:622, s ¼ 0:150, q2 ¼ 0:514, qm

2 ¼ 0:557,

Q ¼ 5:254, F2,17 ¼ 13:987

optimum MRY ¼ 2:29 ð2:16� 2:85Þ
outliers : X ¼ CH¼CðCH3Þ2, Y ¼ CH¼CHCH3;

X ¼ 2-furyl, Y ¼ C6H5

ð1Þ

IC50 is the molar concentration of taxane analogues 3 that
blocks 50% of the growth of MCF-7 cancer cell population
after 72 h of exposure. The above QSAR model is a parabolic
correlation in terms of MRY (molar refractivity of Y substitu-
ents), which suggests that the cytotoxic activities of taxane de-
rivatives 3 first increase with an increase in molar refractivity of
Y substituents up to an optimum MRY value of 2.29 and then
decreases. Two compounds (X=CH=CACHTUNGTRENNUNG(CH3)2, Y=CH=CHCH3

and X=2-furyl, Y=C6H5) were deemed to be outliers on the
basis of their deviations (obsd�pred>2I s). One derivative
(X=2-furyl, Y=C6H5) was considered to be an outlier because
it was less active than expected, by 4.7 times the standard de-
viation. Possible reasons for its unusually low activity are not
clear, although its steric bulk or geometry due to the presence
of a phenyl group at the Y position may decrease coplanarity
with the X group (2-furyl) and minimize activity.[20] Placing the
same aromatic (phenyl) group at both the X and Y positions in-
creases the activity of the compound (3-21; X=Y=C6H5), and
this is well predicted. To assess the effects of excluding outli-
ers, QSAR models were examined before and after the removal
of compound. The statistically significant QSAR models were
not obtained by either considering all the compounds (n=22,
r2=0.097, q2=�0.542) or with one outlier [either 3-4 (n=21,
r2=0.460, q2=0.189) or 3-12 (n=21, r2=0.122, q2=�0.505)] .
Thus the consideration of two outliers, 3-4 and 3-12, in the de-
velopment of QSAR Equation (1) is justified. There is a high
correlation between logP and MRY (r=0.671). Therefore, logP
can replace MRY, and by doing so in Equation (1), we can de-
velop Equation (2) (see Table 1).

log 1=IC50 ¼ 2:51ð�1:54Þlog P�0:28ð�0:19Þlog P2

þ4:80ð�3:06Þ
n ¼ 19, r2 ¼ 0:671, s ¼ 0:144, q2 ¼ 0:501, qm

2 ¼ 0:548,

Q ¼ 5:688, F2,16 ¼ 16:316

optimum log P ¼ 4:50 ð4:24� 5:59Þ
outliers : X ¼ CH¼CðCH3Þ2, Y ¼ CH¼CHCH3; X ¼ 2-furyl,

Y ¼ CH¼CðCH3Þ2;
X ¼ 2-furyl,Y ¼ C6H5

ð2Þ
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This is a parabolic correlation in terms of logP (calculated
hydrophobicity of the whole molecule), which suggests that
the cytotoxic activities of taxane derivatives 3 first increase
with an increase in hydrophobicity of the whole molecule up
to an optimum logP value of 4.50 and then decreases. The sta-
tistics of this [Eq. (2)] is better than that of Equation (1), but it
has one more outlier, namely 3-8. We kept this equation be-
cause it speaks very well about the compound’s ability to cross
the cancer cell membrane.
It is well known that the taxane analogues bind to the b su-

bunits of tubulin polymers in a stoichiometric ratio and pro-
mote tubulin polymerization. This phenomenon disrupts tubu-
lin polymerization dynamics, leading to cell-cycle arrest and ul-
timately cell death by apoptosis. Microtubules are structures
composed of polymerized tubulin heterodimers, which play
fundamental roles in vital cell processes such as chromosome
segregation and intracellular transport. Thus, it will be interest-
ing to formulate a QSAR model for the interaction of these
taxane analogues with the tubulin/microtubule system and
compare it with the present QSAR models [Eq. (1) and Eq. (2)]
to understand their chemical–biological interactions. Unfortu-
nately, we do not have the binding affinity data for these
taxane analogues 3 with the tubulin/microtubule system.

The binding of organic compounds by proteins has long
been recognized as an important concern for biochemists and
pharmacologists. The protein surface is covered by water mol-
ecules with varying degrees in affinity. When a ligand binds to
a site on a given protein surface, it must displace one or more
of these water molecules. Therefore, the nature of water mole-
cule interactions with the protein is important in the ligand
binding process.[21] This is supported by the fact that the bind-
ing of organic compounds to bovine serum albumin (BSA) is
well correlated with their hydrophobicity; this is quite similar
to the case with other proteins such as hemoglobin and ribo-
nuclease. These findings are important for enzyme chemistry
and pharmacology because they show that a linear free-
energy relationship exists between the binding of organic
compounds or drugs to proteins and their hydrophobicity.[22]

The hydrophobic parameter logP is a free-energy-related term
from the van ’t Hoff isotherm:

DG ¼ �2:303 RT � log P ¼ �1:364� log P ðkcalmol�1Þ ð3Þ

and thus represents the free-energy change during the transfer
of the solute from water to the nonaqueous (n-octanol)
phase[23] (R is the gas constant, T is the absolute temperature,

Table 1. Biological and physicochemical parameters used to derive QSAR Equations (1) and (2) as well as the calculated DG values.

Compd X Y log 1/IC50 MRY logP DG
Obsd Eq. (1) Eq. (2)

Pred D Pred D

3-1 CH=C ACHTUNGTRENNUNG(CH3)2 OC ACHTUNGTRENNUNG(CH3)3 10.37 10.41 �0.04 10.43 �0.06 2.10 4.77 �6.51
3-2 CH=C ACHTUNGTRENNUNG(CH3)2 CH=C ACHTUNGTRENNUNG(CH3)2 10.70 10.38 0.32 10.42 0.28 2.03 4.16 �5.67
3-3 CH=C ACHTUNGTRENNUNG(CH3)2 2-furyl 10.42 10.17 0.25 10.29 0.13 1.79 3.73 �5.09
3-4[a,b] CH=C ACHTUNGTRENNUNG(CH3)2 CH=CHCH3 10.92 9.86 1.06 10.30 0.62 1.56 3.76 �5.13
3-5 CH=C ACHTUNGTRENNUNG(CH3)2 C6H5 10.39 10.38 0.01 10.45 �0.06 2.54 4.56 �6.22
3-6 CH=C ACHTUNGTRENNUNG(CH3)2 O ACHTUNGTRENNUNG(CH2)3CH3 10.49 10.44 0.05 10.35 0.14 2.17 5.12 �6.98
3-7 CH=C ACHTUNGTRENNUNG(CH3)2 2-thiophenyl 10.49 10.44 0.05 10.45 0.04 2.40 4.40 �6.00
3-8[b] 2-furyl CH=C ACHTUNGTRENNUNG(CH3)2 10.39 10.38 0.01 10.08 0.31 2.03 3.35 �4.57
3-9 2-furyl OC ACHTUNGTRENNUNG(CH3)3 10.38 10.41 �0.03 10.37 0.01 2.10 3.96 �5.40
3-10 2-furyl 2-furyl 9.92 10.17 �0.25 9.88 0.04 1.79 3.07 �4.19
3-11 2-furyl CH=CHCH3 9.88 9.86 0.02 9.78 0.10 1.56 2.95 �4.02
3-12[a,b] 2-furyl C6H5 9.68 10.38 �0.70 10.35 �0.67 2.54 3.90 �5.31
3-13 2-furyl O ACHTUNGTRENNUNG(CH2)3CH3 10.51 10.44 0.07 10.44 0.07 2.17 4.31 �5.88
3-14 2-furyl 2-thiophenyl 10.21 10.44 �0.23 10.29 �0.08 2.40 3.73 �5.09
3-15 2-thiophenyl CH=C ACHTUNGTRENNUNG(CH3)2 10.30 10.38 �0.08 10.32 �0.02 2.03 3.82 �5.21
3-16 2-thiophenyl OC ACHTUNGTRENNUNG(CH3)3 10.51 10.41 0.10 10.45 0.06 2.10 4.43 �6.04
3-17 2-thiophenyl 2-furyl 10.19 10.17 0.02 10.20 �0.01 1.79 3.54 �4.83
3-18 2-thiophenyl CH=CHCH3 9.79 9.86 �0.07 10.13 �0.34 1.56 3.42 �4.66
3-19 2-thiophenyl O ACHTUNGTRENNUNG(CH2)3CH3 10.32 10.44 �0.12 10.43 �0.11 2.17 4.78 �6.52
3-20 2-thiophenyl 2-thiophenyl 10.44 10.44 0.00 10.43 0.01 2.40 4.20 �5.73
3-21 C6H5 C6H5 10.49 10.38 0.11 10.44 0.05 2.54 4.72 �6.44
3-22 C6H5 OC ACHTUNGTRENNUNG(CH3)3 10.20 10.41 �0.21 10.43 �0.23 2.10 4.78 �6.53

[a] Not used in the derivation of QSAR Equation (1). [b] Not used in the derivation of QSAR Equation (2).
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and DG is the Gibbs free energy). The logP values of taxane
derivatives 3 have been converted into DG values by the appli-
cation of Equation (3) (see Table 1). It is interesting to note
here that the DG value of the parent compound, taxol, is cal-
culated as �6.45 kcalmol�1 (DG=�1.364I logP=�1.364I
4.73=�6.45), which is in very good agreement with the pub-
lished value (DGexp=�6.46 kcalmol�1). In contrast, the same is
not true for taxotere (DDG=DGexp�DG=�6.90+5.57=

�1.33). In addition to the above, a very poor correlation for a
set of nine taxanes was obtained between their DGexp and DG
values (r=0.300), in which DGexp is the published value of DG
obtained from Kexp (experimental binding energy in m).[24] On
the basis of the above reasons, the calculated values of DG
from Equation (3) were not considered in the development of
a QSAR model. On the other hand, the correlation between
logP and DG (r=1.00) does not assist in the development of
another QSAR between log 1/IC50 and DG, because the correla-
tion between log 1/IC50 and logP is already in hand [Eq. (2)] .
Thus, the change in free energy of ligand binding, which in-
cludes protein–ligand interactions (when moving from an
aqueous solution to a protein binding pocket that is frequently
quite hydrophobic in character) cannot be calculated from the
hydrophobic parameter of the ligands (logP) alone. This may
suggest that the binding affinity of the ligands does not
depend only on the interaction with the target protein, but
also on (de)solvation and entropic effects as well as induced
fit : the adaptation of the protein conformation to the ligand
topology.
Over the past three decades, a major trend in the evolution

of QSAR has been the development of 3D QSAR. The main
reason for this trend is due to an in-depth understanding of
protein–ligand interactions at the atomic level supported by a
wealth of experimental evidence. In 3D QSAR, the structures of
the molecules are represented by three-dimensional entities,
which allow the quantitation of electrostatic forces, hydrogen
bonds, and hydrophobic interactions at the atomic level.
Models based on 3D QSAR typically represent a binding site
surrogate with physicochemical properties mapped onto their
surface or a grid surrounding the ligand molecules, superim-
posed in 3D space. Unfortunately, the ability of 3D QSAR meth-
odology such as CoMFA to describe the entropic contribution
to the free energy of binding has not yet been well sorted out.
Nevertheless, new insight could be obtained considering the
waters surrounding macromolecules along with the traditional
QSAR results.[21] The mini-receptor modeling approach has
been the most recent advance in the field of 3D QSAR studies
of taxanes and the corresponding protein environment. This
type of modeling approach is useful for identifying the phar-
macophore features of the ligands and the respective counter-
parts on the tubulin binding site that mainly interact by hydro-
gen bonds and hydrophobic contacts.[24]

Inhibition of MCF-7 breast cancer cell growth by taxane
ACHTUNGTRENNUNGderivatives 4

The biological data of taxane derivatives 4 was used by Islam
et al.[25] for CoMFA and CoMSIA analysis to define the impor-

tant interacting regions at the paclitaxel–tubulin binding site.
The CoMFA analysis showed that the steric and electrostatic
fields are more prominent than the lipophilic field in contribu-
ting toward binding and biological activity. In contrast, CoMSIA
analysis highlighted the steric, electrostatic, hydrophobic, and
H-bonding properties of taxane analogues 4.
Based on the data of Islam et al.[25] (see Table 2), the follow-

ing QSAR [Eq. (4)] was developed:

log 1=IC50 ¼ 3:58ð�2:52Þlog P�0:33ð�0:25Þlog P2

þ0:37ð�0:22ÞI1�0:79ð�0:27ÞI2�6:30ð�0:21Þ
n ¼ 16, r2 ¼ 0:907, s ¼ 0:192, q2 ¼ 0:740,

qm
2 ¼ 0:752, Q ¼ 4:958, F4,11 ¼ 26:819

optimum log P ¼ 5:42 ð5:11� 6:78Þ
outliers : X ¼ Ac, Y ¼ tBuO, Z ¼ 4-fluorophenyl;

X ¼ H, Y ¼ tBuO, Z ¼ CH2CHðCH3Þ2

ð4Þ

This is a parabolic correlation in terms of logP, which sug-
gests that the cytotoxic activities of taxane derivatives 4 first
increase with an increase in the hydrophobicity of the whole
molecule up to an optimum logP value of 5.42 and then de-
creases. I1 and I2 are indicator variables that pinpoint the un-
usual activities of Z=CH=CACHTUNGTRENNUNG(CH3)2 and X=Ac, respectively. The
positive coefficient of I1 suggests that the presence of Z=CH=

CACHTUNGTRENNUNG(CH3)2 will promote cytotoxic activity. On the other hand, the
presence of X=Ac will be detrimental to the activity, as evi-
denced by the negative coefficient of the indicator variable I2.
Two compounds (X=Ac, Y= tBuO, Z=4-fluorophenyl and X=

H, Y= tBuO, Z=CH2CHACHTUNGTRENNUNG(CH3)2) were deemed to be outliers on
the basis of their deviations (obsd�pred>2I s).
Because both series of taxane derivatives 3 and 4 represent

inhibitors to the growth of MCF-7 breast cancer cells, we com-
bined these data and developed Equation (5), which may
apply in the evaluation of the activities of the predicted mole-
cules from Equation (1).

Inhibition of MCF-7 breast cancer cell growth by taxane
ACHTUNGTRENNUNGderivatives 3 and 4

Equation (5) is based on the data obtained from Baloglu
et al.[19] and Islam et al.[25] (see Table 3):

log 1=IC50 ¼ 0:52ð�0:14ÞCMR�3:11ð�1:32Þ
n ¼ 36, r2 ¼ 0:613, s ¼ 0:334, q2 ¼ 0:558, qm

2 ¼ 0:593,

Q ¼ 2:344, F1,34 ¼ 53:855

outliers : 3-4, 4-1, 4-9, and 4-12

ð5Þ

This QSAR [Eq. (5)] reveals that steric features influence the
inhibitory activity in a linear model. Positive CMR (calculated
molar refractivity of the whole molecules) suggests that the in-
crease in the molar refractivity of the whole molecule increases
the inhibitory activities of the combined sets of taxane deriva-
tives 3 and 4 against MCF-7 breast cancer cells. Four com-
pounds (3-4, 4-1, 4-9, and 4-12) were not used in the deriva-
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tion of Equation (5) due to their significant deviation from the
observed activity (obsd�pred>2I s). There is not a good cor-
relation between logP and CMR (r=0.022). A comparison be-
tween observed and predicted values of log 1/IC50 for taxane
analogues 3 and 4 used in the development of QSAR Equa-
tion (5) is shown in Figure 1.

Inhibition of growth of MCF-7-R (doxorubicin-resistant
human breast cancer cells) by taxane analogues 5

Equation (6) is based on the data obtained from Ojima et al.[8]

(see Table 4):

log 1=IC50 ¼ 0:55ð�0:17ÞpX þ 1:19ð�0:47ÞMRY
�5:41ð�1:19ÞpZ þ 15:69ð�2:51Þ
n ¼ 20, r2 ¼ 0:910, s ¼ 0:160, q2 ¼ 0:836, qm

2 ¼ 0:761,

Q ¼ 5:963, F3,16 ¼ 53:926

ð6Þ

in which pX and pZ are the calculated hydrophobic parameters
of X and Z substituents, respectively, whereas MRY is the calcu-
lated molar refractivity of Y substituents. According to this
QSAR model, the taxane derivative 5 must have a more hydro-
phobic X substituent, a more hydrophilic Z substituent, and a
bulkier or more polarizable Y substituent for improved cytotox-
icity against MCF-7-R cancer cells. A comparison between ob-
served and predicted log 1/IC50 values of taxane analogues 5

used in the development of QSAR Equation (6) is shown in
Figure 2.

Inhibition of growth of LCC6-MDR (MDR1-transduced
human breast carcinoma) by paclitaxel, docetaxel,
ACHTUNGTRENNUNGdoxorubicin, and other taxane derivatives 7 and 8

Equation (7) is based on the data obtained from Ojima et al.[26]

(see Table 5):

log 1=IC50 ¼ 0:54ð�0:21Þlog Pþ 5:46ð�0:80Þ
n ¼ 11, r2 ¼ 0:792, s ¼ 0:379, q2 ¼ 0:714, qm

2 ¼ 0:689,

Q ¼ 2:348, F1,9 ¼ 34:269

outliers : paclitaxel and 8-5

ð7Þ

Hydrophobicity is found to be the single most important pa-
rameter for this dataset, which shows that hydrophobic con-
tacts are made at all positions where substituents have been
entered. The linear logP model suggests that highly hydropho-
bic molecules will be more active. It is interesting to note here
that a different class of chemotherapeutic agent such as doxor-
ubicin is very well predicted by this QSAR model [Eq. (7)] . Two
compounds, paclitaxel and 8-5, were deemed to be outliers on
the basis of their deviations (obsd�pred>2I s).

Table 2. Biological, physicochemical, and structural parameters used to derive QSAR Equation (4).

Compd X Y Z log 1/IC50 [Eq. (4)] logP I1 I2
Obsd Pred D

4-1 Ac C6H5 C6H5 8.77 8.55 0.22 4.73 0 1
4-2 H tBuO C6H5 9.00 8.91 0.09 4.08 0 0
4-3[a] Ac tBuO 4-fluorophenyl 9.38 8.63 0.75 4.94 0 1
4-4 COC2H5 tBuO CH2CHACHTUNGTRENNUNG(CH3)2 9.46 9.49 �0.03 5.59 0 0
4-5[a] H tBuO CH2CHACHTUNGTRENNUNG(CH3)2 8.40 9.12 �0.72 4.35 0 0
4-6 H tBuO CH=C ACHTUNGTRENNUNG(CH3)2 9.26 9.27 �0.01 4.07 1 0
4-7 COC2H5 tBuO CH=C ACHTUNGTRENNUNG(CH3)2 9.74 9.86 �0.12 5.31 1 0
4-8 COACHTUNGTRENNUNG(c-C3H5) tBuO CH=C ACHTUNGTRENNUNG(CH3)2 9.70 9.87 �0.17 5.37 1 0
4-9 Ac tBuO CH2CH2CF3 8.03 8.20 �0.17 4.18 0 1
4-10 COOCH3 tBuO CH2CHACHTUNGTRENNUNG(CH3)2 9.48 9.40 0.08 4.87 0 0
4-11 CH3 tBuO CH2CHACHTUNGTRENNUNG(CH3)2 9.55 9.43 0.12 4.95 0 0
4-12 Ac C6H5 4-fluorophenyl 8.29 8.61 �0.32 4.87 0 1
4-13 Ac tBuO CH=C ACHTUNGTRENNUNG(CH3)2 9.22 8.95 0.27 4.78 1 1
4-14 CON ACHTUNGTRENNUNG(CH3)2 tBuO CH=C ACHTUNGTRENNUNG(CH3)2 9.89 9.85 0.04 5.20 1 0
4-15 CONHC2H5 tBuO CH2CHACHTUNGTRENNUNG(CH3)2 9.51 9.50 0.01 5.36 0 0
4-16 CONHCH3 tBuO CH=C ACHTUNGTRENNUNG(CH3)2 9.40 9.62 �0.22 4.55 1 0
4-17 CON ACHTUNGTRENNUNG(C2H5)2 tBuO CH=C ACHTUNGTRENNUNG(CH3)2 9.70 9.64 0.06 6.26 1 0
4-18 COOCH3 tBuO CH=C ACHTUNGTRENNUNG(CH3)2 9.85 9.71 0.14 4.73 1 0

[a] Not used in the derivation of QSAR Equation (4).
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Conclusions

Among novel chemotherapeutic agents, taxane analogues
have emerged as the most powerful group of compounds. The
analogues taxol and taxotere are two important antimitotic
drugs in current clinical use for the treatment of breast can-
cers. These drugs act as microtubule stabilizers and disrupt mi-
crotubule dynamics, thus inducing mitotic arrest and ultimate-
ly cell death by apoptosis. Although taxol and taxotere have
made significant progress in the treatment of breast cancers,
recent reports indicate that their use often results in various
undesired side effects as well as multi-drug resistance. These
limitations have led to the development of new taxane deriva-
tives that have fewer side effects, superior pharmacological
properties, and improved anticancer activity, thus maximizing
the induced benefits for breast cancer patients.
The QSAR paradigm may be helpful in the design and devel-

opment of novel taxane molecules that are expected to have
improved anti-breast-cancer activities, toxicity profiles, and
pharmacology, as well as better drug formulation. Our QSAR
results suggest that the inhibitory activities of taxane ana-
logues against breast cancers are mainly dependent on either
the hydrophobicity or the hydrophobic/molar refractivity de-
scriptors of their substituents. Parabolic correlation [Eq. (1)]
with MRY is the most encouraging example, in which the opti-
mum value of this parameter is well defined. We believe that
this correlation may prove to be an adequate predictive model
that can provide guidance in design and synthesis and subse-
quently yield very specific compounds (compounds 3) that
may have high anticancer activity with fewer side effects and
superior pharmacological properties. On the basis of this QSAR
model, five compounds (3-23, 3-24, 3-25, 3-26, and 3-27) are
suggested as potential synthetic targets. Further QSAR studies
should not only enlarge the areas of their application, but also
increase our understanding of the mechanisms of chemical–
biological interactions.

Experimental Section

All data were collected from published sources (see individual
QSAR for specific literature references). IC50 is the molar concentra-
tion of a compound that inhibits 50% of the growth of a given
cancer cell population; log 1/IC50 is the subsequent dependent var-
iable that defines the biological parameter for QSAR development.
Physicochemical descriptors were auto-loaded, and multi-regres-
sion analyses (MRA) was used to derive the QSAR by using the C-
QSAR program.[27] Selection of descriptors was made on the basis
of permutation and correlation matrices among the descriptors in
order to avoid collinearity problems. Details about the C-QSAR pro-
gram, the search engine, the choice of parameters, and their use in
the development of QSAR models have been discussed previous-
ly.[28] The logP value is the calculated partition coefficient of a com-
pound in n-octanol/water and is a measure of its hydrophobicity,
whereas p is the hydrophobic parameter for the substituents only.
CMR is the calculated molar refractivity for the whole molecule.
Molar refractivity (MR) is calculated from the Lorentz–Lorenz equa-
tion, and is described as follows: [(n2�1)/ ACHTUNGTRENNUNG(n2+2)]ACHTUNGTRENNUNG(Mw/d), for which n
is the refractive index, Mw is the molecular weight, and d is the
density of a substance. MR is dependent on volume and polariza-

Table 3. Biological and physicochemical parameters used to derive QSAR
Equation (5).

Compd log 1/IC50 [Eq. (5)] CMR
Obsd Pred D

3-1 10.37 10.09 0.28 22.18
3-2 10.70 10.03 0.67 22.08
3-3 10.42 9.94 0.48 21.90
3-4[a] 10.92 9.80 1.12 21.61
3-5 10.39 10.35 0.04 22.68
3-6 10.49 10.09 0.40 22.18
3-7 10.49 10.25 0.24 22.49
3-8 10.39 9.98 0.41 21.97
3-9 10.38 10.03 0.35 22.07
3-10 9.92 9.89 0.03 21.79
3-11 9.88 9.74 0.14 21.51
3-12 9.68 10.29 �0.61 22.58
3-13 10.51 10.03 0.48 22.07
3-14 10.21 10.19 0.02 22.39
3-15 10.30 10.29 0.01 22.57
3-16 10.51 10.34 0.17 22.67
3-17 10.19 10.20 �0.01 22.39
3-18 9.79 10.05 �0.26 22.10
3-19 10.32 10.34 �0.02 22.67
3-20 10.44 10.50 �0.06 22.98
3-21 10.49 10.70 �0.21 23.36
3-22 10.20 10.44 �0.24 22.86
4-1[a] 8.77 10.06 �1.29 22.13
4-2 9.0 9.31 �0.31 20.66
4-3 9.38 9.81 �0.43 21.64
4-4 9.46 9.70 �0.24 21.43
4-5 8.40 8.97 �0.57 20.01
4-6 9.26 8.96 0.30 19.98
4-7 9.74 9.69 0.05 21.41
4-8 9.70 9.86 �0.16 21.73
4-9[a] 8.03 9.25 �1.22 20.55
4-10 9.48 9.61 �0.13 21.25
4-11 9.55 9.21 0.34 20.47
4-12[a] 8.29 10.07 �1.78 22.14
4-13 9.22 9.45 �0.23 20.94
4-14 9.89 9.88 0.01 21.78
4-15 9.51 9.89 �0.38 21.80
4-16 9.40 9.64 �0.24 21.31
4-17 9.70 10.36 �0.66 22.70
4-18 9.85 9.53 0.32 21.10

[a] Not used in the derivation of QSAR Equation (5)

Figure 1. Plot of observed versus predicted log 1/IC50 from Equation (5).
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bility. It can be used for a substituent or for the whole molecule.
MR is thus a means of characterizing the bulk and polarizability of
a substituent or compound. Although it contains no information
about the shape, it has found considerable use in biological QSAR,
where intermolecular effects predominate. MR is usually scaled at
0.1 to make it equiscalar with p. The indicator variable I is assigned
the value of 1 or 0 for special features with special effects that
cannot be parameterized, and has been explained wherever used.

In QSAR equations, n is the number of data points, r is the correla-
tion coefficient between observed values of the dependent and
the values calculated from the equation, r2 is the square of the cor-
relation coefficient and represents the goodness of fit, q2 is the
cross-validated r2 (a measure of the quality of the QSAR model),
and s is the standard deviation. The cross-validated r2 (q2) or

LOO�q2 is obtained by using the leave-one-out (LOO) procedure
as described by Cramer III et al.[29] Similarly, the cross-validated rm

2

(qm
2) or LMO�q2 is obtained by using the leave-many-out (LMO)

procedure. Q is the quality factor (quality ratio), for which Q= r/s.
Chance correlation due to the excessive number of parameters
(which also increases the r and s values) can, therefore, be detect-
ed by the examination of the Q value. High values of Q indicate
the high predictive power of the QSAR models and the lack of
“over-fitting”. F represents the Fischer statistics (Fischer ratio), F=
fr2/ ACHTUNGTRENNUNG[(1�r2)m] , where f is the number of degrees of freedom [f=n�
(m+1)] , n is the number of data points, and m is the number of
variables. The F value is actually the ratio between explained and
unexplained variance for a given number of degrees of freedom.
Thus, it indicates a true relationship, or the significance level for
MLR models. The modeling was taken to be optimal when Q
reached a maximum together with F, even if slightly non-optimal F
values have normally been accepted. A significant decrease in F
with the introduction of one additional variable (with increasing Q
and decreasing s) could mean that the new descriptor is not as sig-
nificant as expected, that is, its introduction has endangered the
statistical quality of the combination. However, the statistical quali-
ty could be improved by the introduction of a more convincing
descriptor.[30] Compounds were deemed to be outliers on the basis
of their deviation between observed (obsd) and calculated (pred)
activities if obsd�pred>2s.[31] Each regression equation includes
95% confidence limits for each term in parentheses. All QSAR
models reported herein are derived by us and were not formulated
by the original authors. These QSARs are statistically significant,
which fulfill the conditions of acceptable models as given by Gol-
braikh and Tropsha.[32]

Table 4. Biological and physicochemical parameters used to derive QSAR Equation (6).

Compd X Y Z log 1/IC50 [Eq. (6)] pX MRY pZ

Obsd Pred D

5-1 H 2-furyl OC ACHTUNGTRENNUNG(CH3)3 6.87 6.82 0.05 0.00 1.81 2.04
5-2 COCH3 2-furyl OC ACHTUNGTRENNUNG(CH3)3 7.31 7.22 0.09 0.71 1.81 2.04
5-3 H CH=C ACHTUNGTRENNUNG(CH3)2 OC ACHTUNGTRENNUNG(CH3)3 7.14 6.95 0.19 0.00 1.92 2.04
5-4 COCH3 CH=C ACHTUNGTRENNUNG(CH3)2 OC ACHTUNGTRENNUNG(CH3)3 7.44 7.34 0.10 0.71 1.92 2.04
5-5 COCH2CH3 CH=C ACHTUNGTRENNUNG(CH3)2 OC ACHTUNGTRENNUNG(CH3)3 7.59 7.63 �0.04 1.24 1.92 2.04
5-6 CO ACHTUNGTRENNUNG(c-C3H5) CH=C ACHTUNGTRENNUNG(CH3)2 OC ACHTUNGTRENNUNG(CH3)3 7.55 7.66 �0.11 1.30 1.92 2.04
5-7 CON ACHTUNGTRENNUNG(CH3)2 CH=C ACHTUNGTRENNUNG(CH3)2 OC ACHTUNGTRENNUNG(CH3)3 7.48 7.57 �0.09 1.13 1.92 2.04
5-8 COCH=CHCH3 (E) CH=C ACHTUNGTRENNUNG(CH3)2 OC ACHTUNGTRENNUNG(CH3)3 7.77 7.87 �0.10 1.67 1.92 2.04
5-9 COOCH3 CH=C ACHTUNGTRENNUNG(CH3)2 OC ACHTUNGTRENNUNG(CH3)3 7.42 7.31 0.11 0.66 1.92 2.04
5-10 H CH=CHCH3 (E) OC ACHTUNGTRENNUNG(CH3)3 6.12 6.39 �0.27 0.00 1.45 2.04
5-11 COCH3 CH=CHCH3 (E) OC ACHTUNGTRENNUNG(CH3)3 7.14 6.79 0.35 0.71 1.45 2.04
5-12 CO ACHTUNGTRENNUNG(c-C3H5) CH=C ACHTUNGTRENNUNG(CH3)2 C5H11 6.49 6.59 �0.10 1.30 1.92 2.24
5-13 CON ACHTUNGTRENNUNG(CH3)2 CH=C ACHTUNGTRENNUNG(CH3)2 C5H11 6.53 6.50 0.03 1.13 1.92 2.24
5-14 COCH=CHCH3 (E) CH=C ACHTUNGTRENNUNG(CH3)2 C5H11 6.86 6.80 0.06 1.67 1.92 2.24
5-15 H CH2CHACHTUNGTRENNUNG(CH3)2 OC ACHTUNGTRENNUNG(CH3)3 6.72 6.98 �0.26 0.00 1.94 2.04
5-16 COCH3 CH2CHACHTUNGTRENNUNG(CH3)2 OC ACHTUNGTRENNUNG(CH3)3 7.44 7.37 0.07 0.71 1.94 2.04
5-17 CO ACHTUNGTRENNUNG(c-C3H5) CH2CHACHTUNGTRENNUNG(CH3)2 OC ACHTUNGTRENNUNG(CH3)3 7.66 7.69 �0.03 1.30 1.94 2.04
5-18 CON ACHTUNGTRENNUNG(CH3)2 CH2CHACHTUNGTRENNUNG(CH3)2 OC ACHTUNGTRENNUNG(CH3)3 7.66 7.60 0.06 1.13 1.94 2.04
5-19 H ACHTUNGTRENNUNG(CH2)2CH3 OC ACHTUNGTRENNUNG(CH3)3 6.41 6.42 �0.01 0.00 1.48 2.04
5-20 COCH3 ACHTUNGTRENNUNG(CH2)2CH3 OC ACHTUNGTRENNUNG(CH3)3 6.70 6.82 �0.12 0.71 1.48 2.04

Figure 2. Plot of observed versus predicted log 1/IC50 from Equation (6).
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Validation of QSAR models

QSAR model validation becomes an essential part to understand
statistically robust models capable of making accurate and reliable
predictions of biological activities of new compounds not present
in the data set. The following approaches have been used to vali-
date QSAR Equations (1), (2), and (4)–(7):

Internal validation

* Fraction of the variance (r2): It is believed that the closer
the value of r2 to unity, the better the QSAR model. The
values of r2 for these six QSAR models [Eqs. (1), (2), (4)–(7)]
range from 0.613 to 0.910, which suggests that these QSAR
models explain 61.3–91.0% of the variance in the data. Ac-
cording to the literature, the predictive QSAR model must
have r2>0.6.[32,33]

* Cross-validation test: The cross-validated r2 [q2 (LOO�q2)]
and [qm

2 (LMO�q2)] values for these QSAR models range
from 0.501 to 0.836, and 0.548 to 0.761, respectively. High
values of q2 and qm

2 validate the QSAR models. According
to the literature, the predictive QSAR model must have q2>
0.5.[32,33]

* Standard deviation (s): The smaller the value of s, the
better the QSAR model. The values of s for these QSAR
models range from 0.144 to 0.379.

* Quality factor (Q): High values of Q (2.344–5.963) for these
QSAR models suggest their high predictive power.

* Fischer statistics (F): The larger the value of F, the greater
the probability that the QSAR equation is significant. The F
values for these QSAR models range from 13.987 to 53.926,
which are statistically significant at the 95% level.

* Y-randomization test: In this test, the dependent-variable
vector (Y vector) is randomly shuffled, and a new QSAR

Table 5. Biological and physicochemical parameters used to derive QSAR Equation (7).

Compd X log 1/IC50 [Eq. (7)] logP
Obsd Pred D

paclitaxel (1)[a] 6.46 8.0 �1.54 4.73
docetaxel (2) 6.92 7.65 �0.73 4.08
doxorubicin (6) 5.54 5.63 �0.09 0.32
7-1 H 7.36 7.15 0.21 3.14
7-2 COCH3 8.06 7.53 0.53 3.86
7-3 CON ACHTUNGTRENNUNG(CH3)2 8.09 7.75 0.34 4.27
7-4 COC2H5 8.24 7.82 0.42 4.39
7-5 COCH2C ACHTUNGTRENNUNG(CH3)3 8.30 8.53 �0.23 5.71
8-1 H ND[b] 6.83 ND[b] 2.54
8-2 COCH3 7.19 7.21 �0.02 3.25
8-3 CON ACHTUNGTRENNUNG(CH3)2 7.28 7.43 �0.15 3.67
8-4 COC2H5 7.20 7.24 �0.04 3.32
8-5[a] COCH2C ACHTUNGTRENNUNG(CH3)3 6.88 8.23 �1.35 5.15
8-6 COACHTUNGTRENNUNG(c-C3H5) 7.31 7.54 �0.23 3.88

[a] Not used in the derivation of QSAR Equation (7). [b] Not determined.

Table 6. Y-Randomization data for QSAR Equations (1), (2), and (4)–(7).[a]

Eq. NOR-1 NOR-2 NOR-3 NOR-4 NOR-5
r2 q2 r2 q2 r2 q2 r2 q2 r2 q2

1 0.248 �0.055 0.198 �0.278 0.225 �0.323 0.063 �0.427 0.088 �0.339
2 0.095 �0.528 0.131 �0.150 0.102 �0.314 0.306 0.025 0.052 �0.379
4 0.346 �0.230 0.044 �1.218 0.332 �1.466 0.400 �0.392 0.335 �1.386
5 0.166 0.094 0.004 �0.102 0.152 0.081 0.108 0.018 0.035 �0.099
6 0.186 �0.288 0.185 �0.133 0.187 �0.130 0.248 �0.202 0.185 �0.208
7 0.001 �0.517 0.013 �0.412 0.148 �0.489 0.244 �0.074 0.144 �0.164

[a] NOR=number of Y randomization.
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model is developed using the original independent variable
matrix. The process is repeated several times. It is expected
that the resulting QSAR models should have low r2 and low
q2 values. This is a widely used technique to ensure the ro-
bustness of a QSAR model. The statistical data of r2 and q2

for five runs are listed in Table 6 [Eqs. (1), (2), (4)–(7)] . The
poor values of r2 and q2 in the Y-randomization test ensure
the robustness of QSAR models.[31a, 33–35]

* Lack of over-fitting : A model over-fits if it includes more
descriptors than required. The lack of over-fitting for all the
QSAR models [Eqs. (1), (2), (4)–(7)] was confirmed by using
the following conditions:
1) Number of data points/Number of descriptors � 4
2) High values of Q
3) All the QSAR models [Eqs. (1), (2), (4)–(7)] were checked
for their correlation with fewer descriptors than that of the
original. None of them was found to be statistically signifi-
cant.

4) Y-randomization test (Table 6) suggests that the high r2

values of the QSAR models [Eqs. (1), (2), (4)–(7)] are not due
to chance correlation or over-fitting.[36]

External validation

Selection of the training and test sets: The original data set of
QSAR model (1) was divided into training [n=15 (~75%)] and test
[n=5 (~25%)] sets in a random manner (five trials). The QSAR
models for these five training sets were generated by using the
same descriptors as those of Equation (1) and validated on the
basis of their statistics (acceptance criteria: r2>0.6 and q2>0.5).
The predictive capacity of these models is judged from their pre-
dictive R2 (R2pred) values, which were calculated by the following
[Eq. (8)]:

R2pred ¼ 1�
P
ðYpredðtestÞ � YtestÞ2

P
ðYtest � YtrainingÞ2

ð8Þ

Table 7. Random selection pattern of the test sets and statistical parameters of the QSARs for their respective training sets obtained from the division of
the original sets of the QSAR Equations (1), (2), and (4)–(7).

Eq. NOS[a] Test sets Statistical parameters[b]

n r2 q2 s R2pred

1 1a 3-3, 3-10, 3-14, 3-18, 3-22 15 0.694 0.591 0.109 0.597
1b 3-2, 3-3, 3-7, 3-10, 3-11 15 0.709 0.505 0.108 0.510
1c 3-2, 3-3, 3-10, 3-18, 3-22 15 0.733 0.618 0.093 0.579
1d 3-2, 3-7, 3-14, 3-18, 3-22 15 0.681 0.550 0.120 0.537
1e 3-2, 3-14, 3-16, 3-18, 3-22 15 0.697 0.570 0.116 0.512

2 2a 3-10, 3-13, 3-18, 3-22 15 0.704 0.523 0.109 0.632
2b 3-2, 3-11, 3-18, 3-22 15 0.792 0.605 0.079 0.609
2c 3-3, 3-10, 3-18, 3-22 15 0.730 0.523 0.106 0.634
2d 3-13, 3-16, 3-18, 3-19 15 0.719 0.521 0.125 0.536
2e 3-3, 3-7, 3-14, 3-18 15 0.731 0.524 0.123 0.523

4 4a 4-1, 4-11, 4-16, 4-18 12 0.935 0.718 0.185 0.695
4b 4-2, 4-8, 4-10, 4-18 12 0.916 0.765 0.211 0.792
4c 4-4, 4-7, 4-8, 4-10 12 0.914 0.785 0.217 0.831
4d 4-8, 4-11, 4-15, 4-16 12 0.930 0.748 0.200 0.640
4e 4-7, 4-8, 4-15, 4-18 12 0.904 0.742 0.217 0.923

5 5a 3-2, 3-3, 3-6, 3-12, 3-13, 4-2, 4-3, 4-5, 4-15 27 0.674 0.626 0.241 0.527
5b 3-2, 3-6, 3-7, 3-9, 3-13, 3-16, 3-21, 4-5, 4-17 27 0.614 0.552 0.272 0.600
5c 3-2, 3-7, 3-12, 3-16, 3-21, 4-2, 4-3, 4-5, 4-17 27 0.633 0.582 0.258 0.566
5d 3-2, 3-12, 3-16, 3-21, 4-2, 4-3, 4-5, 4-6, 4-17 27 0.606 0.543 0.258 0.534
5e 3-2, 3-7, 3-12, 3-21, 4-2, 4-5, 4-6, 4-11, 4-17 27 0.606 0.551 0.264 0.616

6 6a 5-2, 5-6, 5-8, 5-14, 5-19 15 0.891 0.751 0.182 0.951
6b 5-5, 5-9, 5-14, 5-17, 5-18 15 0.888 0.779 0.187 0.977
6c 5-1, 5-4, 5-8, 5-13, 5-20 15 0.898 0.756 0.179 0.921
6d 5-7, 5-8, 5-14, 5-16, 5-20 15 0.903 0.776 0.179 0.912
6e 5-4, 5-7, 5-12, 5-18, 5-19 15 0.882 0.743 0.184 0.968

7 7a 7-1, 7-4, 7-5 8 0.774 0.671 0.406 0.854
7b 7-2, 7-4, 8-3 8 0.853 0.769 0.345 0.566
7c 7-5, 8-2, 8-6 8 0.790 0.694 0.433 0.700
7d 7-4, 8-2, 8-4 8 0.800 0.671 0.425 0.709
7e 7-3, 7-5, 8-3 8 0.766 0.641 0.428 0.889

[a] NOS=number of selection of the training/test sets. [b] Parameters of the QSARs for the training sets (the compounds remaining after removal of the
test set compounds from the original set).

650 www.chemmedchem.org C 2008 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim ChemMedChem 2008, 3, 642 – 652

MED R. P. Verma and C. Hansch

www.chemmedchem.org


In Equation (8), YpredðtestÞ and Ytest are the respective predicted and
observed activities of the test set compounds, and Ytraining is the
mean activity of the training set compounds. A random selection
pattern of the test sets and the statistical parameters of the respec-
tive training sets for QSAR (1) are given in Table 7. Similarly, the
QSAR models (2) and (4)–(7) were also divided into training and
test sets for their external validation. Details about the selection
pattern of the test sets and the statistical parameters of the respec-
tive training sets for the QSAR Equations (2) and (4)–(7) are also
listed in Table 7.

New molecule prediction

QSAR model (1) is the parabolic correlation in terms of MRY (molar
refractivity of Y substituents), and is the most encouraging exam-
ple in which the optimum value of MRY is well defined. We believe
that this model may prove to be an adequate predictive model for
providing guidance in design and synthesis, and for yielding very
specific compounds (such as 3) that may have high anti-breast-
cancer activity with fewer side effects and superior pharmacologi-
cal properties. On the basis of this QSAR model, five compounds
(3-23, 3-24, 3-25, 3-26, and 3-27) are suggested as potential syn-
thetic targets. The predicted log 1/IC50 values of these proposed
molecules obtained from QSAR models (1), (2), and (5) and also
from their best training sets [(1a), (2c), and (5e); Table 7] are listed
in Table 8 along with their physicochemical parameters. Good
agreement among the log 1/C values of the predicted molecules
obtained from different models suggests accuracy in the predic-
tion.

Keywords: breast cancer · hydrophobicity · molar refractivity ·
QSAR · taxanes
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